1)电化学腐蚀
前面谈到不锈钢在高温状态下产生的腐蚀现象。接下来说一说常温状态下的不锈钢的腐蚀现象。要知道,温度对不锈钢的耐氧化有很大关系,因为,不同性质的不锈钢其表面氧化温度是不一样的,所以,正确选取不锈钢应考虑在什么温度下使用,再去考虑其它方面的性能和要求。说到这里,应该对不锈钢有了一点了解,不锈钢的不锈性是有条件的。那么,电化学腐蚀是如何发生的呢?首先,应知道,物质世界的元素和组成的化合物,都具有不同的电极电位(电极势),也就是说,不同的物质之间存在着电极势,一旦有溶液或电解质充实两物质之间,创立了电池回路,形成微电流。这就说,电腐蚀是一种普遍的现象。
⑴点腐蚀产生有的因素
①不锈钢表面夹杂:表面存在有氧化物、硫化物、硅酸盐等夹杂,如果表面再遇到水溶液附带上面,水在两物质之间电解,有微电流产生,水电解为氢离子和氢氧离子,而氢氧离子与铬可发生化学反应,变成氢氧化铬而腐蚀。
②不锈钢表面粗糙面:表面存在麻坑或麻面等粗糙的表面。粗糙的表面容易存积空气中的悬浮微粒(灰尘),而灰尘又吸附空气中的水份,于是,水份的存在,水份在两物质之间的电极电位的作用下电解,分解出氢离子和氢氧离子,氢氧离子与铬反应而腐败蚀。
③氯离子环境:不锈钢表面处于有氯离子的气氛中时,氯离子选择性破坏表面钝化膜,选择性是因为不锈钢表面存在有夹杂、粗糙点、成分偏析和力学性能差异,氯离子本就是电解质,氯离子与氧可生成次氯酸,氢氧离子与铬反应生成氢氧化铬,钝化膜一旦被破坏就会出现腐蚀集中,也称孔蚀。
⑵组织腐蚀:
组织腐蚀也称晶间腐蚀。奥氏体不锈钢或奥氏体与铁素体双相钢中,钢中的碳元素随加热溶解于奥氏体中,如在热轧制过程中,钢被加热到1000-1200℃,碳元素开始于900℃溶解于奥氏体中,1050℃碳元素基本完全溶解于奥氏体中。但在冷却过程中,碳又从奥氏体中被析出,并在晶间处与铬元素化合,成为Cr23C6的碳化物。使晶间处的铬含量减少,造成贫铬现象,也就使去防锈的功能。
⑶应力腐蚀:
不锈钢热轧变形、冷拔变形、冷轧变形和热处理过程中,钢基内部残余应力将造成通条性能不均。特别是冷变形表面,因晶格奇变,容易受外部环境影响(如摩擦、划伤、碰撞和浸蚀受到腐蚀集中)和附加应力叠合大于晶间原子力时被破坏。
3、不锈钢的耐腐蚀性能
⑴不锈钢的组织结构
马氏体<铁素体<镍-铬奥氏体
这里特别提到奥氏体不锈钢分高镍、低镍和无镍奥氏体不锈钢。其不锈性能有:
无镍奥氏体<低镍奥氏体<高镍奥氏体
——马氏体是因为钢中铬含量为13%左右,并有碳含量为0.1%-0.4%的范围变化。就是说碳含量较高,而碳元素在不锈钢中是降低耐锈性能的,所以防锈性是随碳含量增加而下降。再来谈谈,马氏体不锈钢。人们常称马氏体和铁素体为铬不锈钢,还有称为铬铁钢。其实马氏体不锈钢与铁素体不锈钢有很大区别的,一是形成机理不一样;由于钢中碳元素是奥氏体形成元素。马氏体在高温区为奥氏体组织,冷却到低温(常温)为马氏体组织,也就是说,马氏体不锈钢有相变发生。根据冷却的方式和冷却速度,可得到淬火工艺有不同的硬度和强度性能,但塑性很低,冷变形较差,变形后容易自裂,需及时退火消除应力处理。所以说,马氏体不能冷变形后交货。
——铁素体不锈钢铬含量提高到17%以上或碳含量降到0.08%以下时,其内部组织为铁素体在高温到低温不发生相变,随着铬元素含量的增大,防锈蚀能力也增强,但铁素体不锈钢变形硬化率很低,变形应力也低。不能用冷变形提高强度值,反而降低了塑性,使铁素体不锈钢变脆如受力而自裂。再是铁素体不锈钢有低温脆性,不能适用于常温以下(特别是东北地区的冬季)的装置,还有475℃脆性的温度下,所以使用范围较窄,造成使用上的限制。如果将铁素体碳含量降低到0.001%以下,再将钢中的氮元素降到0.001%以下,而低温脆性可降到-80℃以下,发挥出无镍和防锈的优越性。
(关键字:不锈钢 知识 漫谈)